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Variable inertia vibration absorbers (VIVA) are previously used for the vibration control

of single degree of freedom (dof) primary systems. The performance of such absorbers is

studied in many investigations. This paper presents the dynamic modeling and

simulation of a proposed modified design of such VIVA’s for the vibration control of

analytical form. This model, which is highly nonlinear, is used to develop a

computational algorithm to study the absorber performance characteristics. This

algorithm is programmed and simulated in Matlab. The obtained results are numerically

verified using SAMS2000 software. The effect of mass and stiffness of the proposed VIVA

on its performance and tuning is discussed. An optimization algorithm is developed to

select the best absorber parameters for vibration suppression of a specific primary

system. The obtained results show a good agreement with those obtained using similar

techniques. In addition, a linearized model of VIVA dynamics is developed, tested and

simulated for the same data used in its nonlinear model. The relative deviation between

results of the linear and nonlinear models is less than 1%, which confirms the realistic

use of this linearized model. The experimental testing and verification of the simulation

results of the proposed VIVA is the subject of another paper.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the dynamics and vibrations of mechanical systems is one of the important problems in industry.
Suppression of unwanted vibrations is an important goal in many applications such as machines, tall buildings, bridges,
offshore platforms, pipelines and aircraft cabins. A significant amount of work has been devoted to search for a suitable
means to reduce the vibration level in these applications. Different concepts had been developed and employed in this
research area. The most popular used concepts are vibration damping, isolation, and vibration absorption. Dampers
dissipate system energy, and vibration isolations prevent vibration transmission, while vibration absorbers transmit the
vibration energy to a secondary system. The vibration absorber is a mechanical device, consists mainly of a mass, spring
and damper, designed to have a natural frequency equal to the frequency of the unwanted vibration of the primary system.

Variable inertia vibration absorbers (VIVA) were used for the vibration control of single degree of freedom (sdof)
primary systems and their performance were studied in many investigations as detailed in the next section. Very few
studies were done for multi-degrees of freedom (mdof) primary systems [1,2]. This paper presents the dynamic modeling
and simulation of a proposed modified design of such VIVA’s for the vibration control of two dof primary systems using
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Nomenclature

ca torsional damping coefficient of the absorber
resilient element

cp damping coefficient of the primary system
resilient element

D system dissipating energy
fn natural frequency of the absorber
f excitation frequency
fe excitation force applied on the primary mass
fv force maintain the sliding block in its position
g gravitational acceleration
hp height of the primary mass measured from the

reference ground
ka torsional stiffness of the absorber resilient

element
kp stiffness of the primary system resilient ele-

ment
l1,l2 distance between of primary mass resilient

elements
ls absorber rod length
mp primary mass

ms mass of the absorber rod
mv mass of the sliding block
qi generalized coordinate
qs vector maps state space variables
rs distance between the absorber rod rotation

centre and its centre of mass
rv moving block position.
yp(dom) dominator for variable yp

yp(dom) dominator for variable yp

t time (s)
Yp primary mass linear displacement
Yp primary mass angular displacement
yt total inclination angle of the absorber rod
yf inclination angel of the absorber rod at which

no deflection occurs in the absorber torsional
resilient element

yd static angular deflection of the absorber resi-
lient element

dp static deflection of the primary system resili-
ent element (no absorber)

op natural frequency of the primary system
jI phase angles of system displacement variables
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Lagrange formulation. The effect of the absorber mass and stiffness on its performance and tuning is discussed. An
optimization algorithm is developed to select the best absorber parameters for vibration suppression of a specific
primary system. After an introduction, this paper is organized in the following main sections: (Section 2) Literature survey,
(Section 3) Proposed variable inertia vibration absorber, (Section 4) System mathematical modeling, (Section 5) VIVA
parameters optimization, (Section 6) Computation procedure, (Section 7) Simulation results and (Section 8) Conclusions.

2. Literatur survey

Dynamic vibration absorbers DVA’s can be classified into three main types: passive, active and semi-active (active–
passive). Sun et al. [3] paper gives an excellent survey of these three types of DVA’s. The next subsections give an overview
of research done on these three classes of vibration absorbers as well the existing optimization techniques used to select
their optimum parameters.

2.1. Passive DVA’s [4–19]

The concept of a passive DVA device was outlined by Watts [4], when addressing a method to reduce the rolling of
ships. However, the practical design of a vibration absorber was proposed by Frahm [5]. He designed a fluid tank system to
reduce the rolling of ships. In his design, both the primary system and the absorber had no damping. The DVA’s advantages
include the ease of installation, simple design, and effectiveness over narrowband frequency vibration. The DVA could be
selected such that the combined system has anti-resonance at the desired cancellation frequency. An undamped DVA
allows the best suppression at a specified fixed design frequency. This is only effective if the excitation frequency remains
constant. The disadvantage is that if the excitation frequency shifts, the response of the combined system may be higher
than the primary system alone, to remedy this problem, Ormondroyd and Den Hartog [6] considered the case of a damped
vibration absorber attached to the primary system. This resulted in a system effective over an extended frequency range by
reducing the response at the two resonant frequencies of the combined system. However, the response at the primary
system natural frequency can no longer be reduced to zero. Hence, a trade exists between the primary system’s response
and operating in a broadband. Den Hartog [7] described an optimization method for broadband applications to obtain the
optimum tuning frequency and damping ratio. Esmail zadeh and Jalili [8] studied the optimization of the vibration
absorber to reduce vibrations of a structurally damped Timoshenko beam. Al-Bedoor et al. [9] used the concept of the
passive absorber to reduce the torsional vibrations during start up of systems driven by synchronous motor. Ertas et al.
[10] studied the performance of passive pendulum type vibration absorber attached to a primary structure whose
orientation varies. Cuvalci [11] numerically and experimentally determined the absorption region with respect to forcing
amplitude, internal frequency ratio and mass ratio, for a system of a cantilever beam connected to a pendulum absorber.
Anderson et al. [12] used a sloshing absorber instead of damped DVA, which needs less maintenance and makes use of
existing water storage tanks to reduce structures vibration. Cuvalci et al. [13] had performed a parametric study to
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experimentally determine the effect of forcing frequency, forcing amplitude, mass ratio and frequency ratio on the
displacement response of a system coupled to a passive DVA. Dayou and Brennan [14] used multiple DVA’s to reduce the
structural vibration at each single frequency in the frequency range of interest. Maes and Sol [15] presented a smart
solution to reduce the noise generated by the standing wave generated due to the motion of a vehicle on a railway. Cha
[16] investigated reducing the vibration in a general structure during harmonic excitation by proper choosing of
mass-spring properties and locations. Yaman and Sen [17] had studied the nonlinear behavior of a slender beam with a tip
mass attached to a pendulum used as a passive vibration. The slender beam is of varying orientation and is subjected to a
sinusoidal base excitation. Fischer [18] compared the effect of pendulum, ball and sloshing liquid absorbers and assessed
the effectiveness of all of them. Hitchcock et al. [19] presented the results of a full-scale installation of a passive vibration
absorber, called a liquid column vibration absorber (LCVA), on a 67 m height steel frame communications tower.

2.2. Active DVA’s [20–41]

To provide additional features to vibration suppression in many applications, active DVA’s were introduced. Active
DVA’s have an arbitrary force generation mechanism in parallel with its spring and damper. The force generation
mechanism adds more flexibility to incorporate better control to provide cancellation forces. These forces are frequently
implemented with a voice coil actuator design. Chang and Soong [20] presented an approach for optimal design of an
active DVA system. Summerfield et al. [21,22] had developed an adaptive control system applied to minimize the force
transmitted through a two-stage vibration isolation mount. Zimmerman et al. [23] described an active DVA designed for
structural control. Sato [24] had examined a unique configuration using a variable speed rotor that may be partially filled
with a liquid. Stephens et al. [25] had developed a new direction of using a damped dynamic vibration absorber with an
active control element. Olgac and Holm Hansen [26,27] had developed the delayed resonator concept to provide active
control of a DVA. von Flotow et al. [28] presented a survey paper which covers a number of adaptively tuned DVA designs.
Okada-Matsuda and Hashitani [29] presented a novel circuit to provide sensing and actuation in a voice coil design.
Heilmann [30] and Burdisso and Heilmann [31] had studied a single-mass active dynamic absorber and a dual-mass active
dynamic absorber for broadband control. Hyde-Tupper and Anderson [32] had developed an active actuator using the same
fluid for damping as a hydraulic lever for a voice coil. Jalili and Olgac [33,34] had studied the use of multiple delayed
resonator vibration absorber as well the sensitivity of an optimum delayed feedback vibration absorber. Pai et al. [35] used
nonlinear vibration absorbers with higher order internal resonances to control structural vibrations. Lesieutre et al. [36]
described a class of recently developed inertial actuators that is passed on mechanical amplification of an active
piezoceramic element. Caneal et al. [37] presented an experimentation of two different tuning algorithms to minimize the
radiated noise of simply supported plate. Lin [38] developed an approach for achieving a high-performance active
piezoelectric absorber of a smart panel using adaptive networks in a hierarchical fuzzy control. Abakumov and Miatov [39]
presented different control algorithms for active vibration isolation systems subject to random disturbances. Shang-Teh
et al. [40] developed an active vibration absorber for a flexible plate boundary-controlled by a linear motor. Sun et al. [41]
studied the control effort of an active resonator absorber.

2.3. Semi-active DVA’s [42–67]

A semi-active DVA is a system implemented such that small energy expenditures can alter the system parameters.
There are three types of semi-active DVA’s, variable stiffness, variable damping and variable inertia DVA. A semi-active
system only requires signal processing and low level power signals rather than full power electronics for an active system.
Semi-active methods involve the use of passive elements that can be optimally tuned to perform over a certain frequency
range. Lamancusa [42] described haw semi-active methods are used for narrowband applications with adaptive Helmholtz
resonators. These resonators are able to control sound within a certain frequency range, over a number of different speeds,
by varying the resonator neck dimensions or cavity volume or both. Graf et al. [43] explained the use of semi-active
methods to vary the stiffness and damping of an engine mount in the area of broadband applications as well in structural
control areas. Ryan et al. [44] proposed a semi-active vibration absorber using variable spring stiffness as the adaptive
component mounted on a primary system. Slavicek and Bollinger [45] had produced a variable stiffness using nonlinear
stiffness characteristics of plastic elements. Karnopp et al. [46] had implemented a semi-active electro-hydraulic damper.
Hrovat et al. [47] had demonstrated semi-active hydraulically controlled damping modulation to damp wind-induced
vibration in tall buildings. Rakheja and Sankar [48] studied the vibration isolation using a semi-active ‘on–off’ damper with
a variable sized orifice which controls the damping. Miller [49] reported the use of passive, semi-active and active
suspension system in tests of a quarter car model. Tanaka and Kirushima [50] studied the transient vibration at impact
rather than steady state using a semi-active damper. Wang and Lai [51] had developed a control strategy during rotational
system startup using variable stiffness vibration absorber. Ryan et al. [52] presented a variable stiffness DVA that changes
the helical spring length for stiffness alteration. Nagaya et al. [53] used a variable stiffness vibration absorber to control
principle modes. Jie Liu and Kefu Liu [54] presented an electromagnetic vibration absorber (EMVA) whose stiffness could
be tunable on-line and has the capability suppressing a primary system vibration excited by a harmoni force with a
variable frequency. Seung-Yong et al. [55] presented a semi-active fuzzy control technique to enhance the seismic
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performance of cable-stayed bridges using magneto-rheological (MR) dampers. Chooi and Olutunde [56] had modeled and
tested the MR dampers using analytical flow solutions. Swevers et al. [57] presented a flexible and transparent model-free
control structure based on physical insights in the car and semi-active suspension dynamics used to linearize and decouple
the system. Erramouspe et al. [58] presented a modified resetting stiffness algorithm which is implemented and tested. Lin
[59] developed an innovative approach for achieving a high performance adaptive piezoelectric absorber in which the
concept of hierarchy for controlling fuzzy systems is applied.

The concept of variable inertia vibration absorber VIVA was proposed by Jalili et al. [60]. The main idea is to change the
position of a mass sliding along a hinged rod to change the inertia of the absorber and consequently its natural frequency
to be equal to the primary system excitation frequency. VIVA devices can be adaptively tuned to suppress the unwanted
vibrations according to that measured from the original system. Takita and Seto [61] used a variable length pendulum to
adaptively tune the absorber frequency by adjusting its moment arm. This was a creative implementation which provides a
tuning mechanism for the anti-resonance. Moyka [62] examined a semi-active system using a variable inertia pendulum
through a stepper motor. The frequency response for various pendulum lengths on a cantilever beam primary system was
demonstrated. Williamas et al. [63] used shape memory alloys to construct and test a variable stiffness DVA’s. Morgan and
Wang [64] presented an active–passive piezoelectric absorber configuration that can track and suppress multiple harmonic
excitations. Fallahi et al. [65] examined VIVA dynamics as adaptive tuned vibration absorbers. A linearized dynamic model
is used for its tonal (pure harmonic) tuning with a comparison of the tuned and detuned responses of the primary system.
Megahed et al. [66] had proposed different VIVA designs and their dynamic models were analytically obtained and
simulated. El-kabbany [67] had studied and simulated the dynamics of different VIVA designs with experimental
verifications for sdof primary systems. As mentioned before, Megahed and Abd El-Razik [1] and Abd El-Razik [2] had
extended the use of VIVA for two dof primary systems in simulation and experimentation.

2.4. DVA performance optimization [6,68–81]

Many studies had been investigated about the optimization of the performance of DVA absorbers. For a DVA attached to
a sdof undamped primary system, the used optimization techniques are based on the existence of two fixed invariant
points [6]. This concept is not valid for damped primary systems. The optimum values of stiffness and damping coefficients
of a DVA may be determined using the technique presented in the famous book of Den Hartog [68]. Since this pioneer
work, several contributions had been achieved, which consider sdof and mdof undamped primary systems. Few studies
were done on damped vibration absorbers attached to sdof damped main systems. Randall et al. [69] used a numerical
search method to find the optimal damping and stiffness values of an absorber attached to a damped main system.
Thompson [70] used the frequency locus method for the same problem but considering a primary system with associated
viscous damping. The construction of the frequency loci for a general system leads to the determination of graphical
criteria for the optimization problem. Kitis et al. [71] employed a numerical optimization method for finding the optimal
parameters of a damped vibration absorber attached to a damped mdof primary system. The method is applied to twenty
two dof primary systems. Snowdon et al. [72] proposed a cruciform dynamic vibration absorber that comprises two free–
free beams loaded with masses at their free ends. Each branch of the beam is tuned to the fundamental frequency and
second or third natural resonances of the primary system. Vakakis and Paipetis [73] studied the effect of a viscously
damped dynamic absorber on the behavior of a linear vibration system with mdof. The optimum values of the absorber
parameters are obtained with minimizing the transmissibility of the system over the whole frequency range. Ozer and
Royston [74] presented an extension of the classical Den Hartog’s approach to mdof undamped main system. Analytical
expressions of the optimal absorber parameters are obtained using the Sherman–Morrison matrix inversion formula [75].
Rice [76] used the modal data and finite element methods for multiple discrete vibration absorber systems in broadband
applications. Rade and Steffen [77] proposed a general methodology for the optimum selection of DVA parameters so as to
guarantee the efficiency of those devices over a previously selected frequency band. Zuo and Nayfeh [78], an efficient
numerical approach based on the descent-sub gradient method was proposed to maximize the minimal damping of modes
in a prescribed frequency range for general viscous or hysteretic mdof tuned mass systems. Many other applications on the
optimization of absorber performance can be found in [79–81].

3. Proposed variable inertia vibration absorber

Very few studies were done for mdof primary systems [1,2]. Fig. 1 presents a schematic sketch of the proposed VIVA
attached to a two dof primary system. The primary system has a mass (mp) and mass moment of inertia (Ip) mounted on a
support of linear stiffness (kp) and linear damping coefficient (cp).The primary system is subjected to an excitation force (fe)
at its centre of mass and is described by two independent variables (yp, yp). The proposed VIVA consists of a hinged rod of
mass (ms) and mass moment of inertia of (Is), sliding block of mass (mv) and mass moment of inertia of (Iv). The hing is
assumed to have a linear tortional stiffness ka and a linear damping coefficient ca. The sliding block can be positioned at any
distance (rv) along the rod as shown in Fig. 1. The absorber geometric dimensions (hP, rs) are chosen to satisfy the system
constraints. The absorber is described by two independent variables (y, rv). The whole system has four degrees of freedom
(yp, yp, y, rv).



Fig. 1. Proposed VIVA attached to 2 dof primary system.

Fig. 2. VIVA absorber.
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4. System mathematical modeling

The main idea to reduce the vibration of the primary system is to position the sliding block at most suitable location on the
absorber rod (rv) to minimize (yp,yp). To achieve this goal, the dynamics of the whole system is studied using Lagrange equations
of motion and the tonal tuning of the proposed VIVA is obtained as function of the absorber parameters (ka and ca).

The general form of Lagrange formulation in which damping is linear is as follows:

d

dt

@T

@qU

i

� �
�
@T

@qi
þ
@U

@qi
þ
@D

@qU

i

¼Ci, qi ¼ ½ypypyrv�
T (1)

where T and U are, respectively, the total kinetic and potential energy of the system, D is the dissipated energy in the linear
damping elements, while Gi, qi and qU

i are, respectively the ith variable generalized force, generalized coordinate and
generalized velocity. All calculations are done [2] and the following four equations of motions are obtained:

ðmpþmsþmvÞ €ypþðmsrsþmvrvÞcosðytÞ
€yp�ðmsrsþmvrvÞcosðytÞ

€yþmv sinðytÞ€rvþmv _rvð
_yp�

_yÞcosðytÞþmvð
_yp�

_yÞð_rvcosðytÞ

�rvð
_yp�

_yÞsinðytÞÞ�msrsð
_yp�

_yÞ2sinðytÞþkp1
ðyp�l1ypÞþkp2

ðypþ l2ypÞþcp _yp ¼ fe (2a)

ðmsrsþmvrvÞcosðytÞ €ypþðmsr
2
s þmvr2

vþ Isþ Ipþ IvÞ
€yp�ðmsr

2
s þmvr2

vþ Isþ IvÞ
€yþmv _ypð_rv cosðytÞ�rvð

_yp�
_yÞsinðytÞÞ

þ4mvrv _rvð
_yp�

_yÞ�msrsð
_yp�

_yÞsinðytÞþcað
_y� _ypÞþkaðy�ypÞ�kp1

ðyp�l1ypÞðl1Þþkp2
ðypþ l2ypÞðl2Þ ¼ 0 (2b)

�ðmsrsþmvrvÞcosðytÞ €yp�ðmsr
2
s þmvr2

vþ Isþ Ipþ IvÞ
€ypþðmsrs

2þmvr2
vþ Isþ IvÞ

€yþmv _ypð_rv cosðytÞ

þrvð
_yp�

_yÞsinðytÞÞ�4mvrv _rvð
_yp�

_yÞþmsrsð
_yp�

_yÞsinðytÞþcað
_y� _ypÞþkaðy�ypÞ ¼ 0 (2c)

mv sinðytÞ €ypþmv €rv�mvrvð
_yp�

_yÞ2�2mvrvð
_yp�

_yÞ2þcv _rvþmvg sinðytÞ ¼ fv (2d)



S.M. Megahed, A.Kh. Abd El-Razik / Journal of Sound and Vibration 329 (2010) 4841–48654846
where hp is the height of the primary mass at its static equilibrium position (see Fig. 1), fv the applied force to maintain the
moving block in its position (input data), yp the primary system angular displacement (see Fig. 1), y the absorber rod
angular displacement measured from its static equilibrium given by

kayd�ðmsrsþmvrvÞg cosðyf�ydþypÞ ¼ 0 (3a)

where yd is the absorber rod angular static deflection at static equilibrium position, yf the absorber rod installation angle
with zero torsional deflection (input data) and yt the absorber rod total inclination angle (see Fig. 1).

yt ¼ yf�yd�yþyp (3b)

The four equations of motion of the whole system (Eq. (2)) can be arranged in matrix form as follows:

M €q ¼N

ðmpþmsþmvÞ ðmsrsþmvrvÞcosðytÞ �ðmsrsþmvrvÞcosðytÞ mv sinðytÞ

ðmsrsþmvrvÞcosðytÞ msr2
s þmvr2

vþ Isþ Ivþ Ip �ðmsr2
s þmvr2

vþ Isþ IvÞ 0

�ðmsrsþmvrvÞcosðytÞ �ðmsr2
s þmvr2

vþ Isþ IvÞ msrs
2þmvr2

vþ Isþ Iv 0

mv sinðytÞ 0 0 mv

2
66664

3
77775

€yp

€yp

€y
€rv

2
66664

3
77775¼

A1

A2

A3

A4

2
66664

3
77775 (4a)

where

A1 ¼�mv _rvð
_yp�

_yÞcosðytÞ�mvð
_yp�

_yÞð_rv cosðytÞ�rvð
_yp�

_yÞsinðytÞÞþmsrsð
_yp�

_yÞ2sinðytÞ�kp1
ðyp�l1ypÞ

�kp2
ðypþ l2ypÞ�cp _ypþ fe

A2 ¼�mv _ypð_rvcosðytÞ�rvð
_yp�

_yÞsinðytÞÞ�4mvrv _rvð
_yp�

_yÞþmsrsð
_yp�

_yÞsinðytÞ�cað
_y� _ypÞ�kaðy�ypÞ

þkp1
ðyp�l1ypÞðl1Þ�kp2

ðypþ l2ypÞðl2Þ

A3 ¼�mv _ypð_rv cosðytÞþrvð
_yp�

_yÞsinðytÞÞþ4mvrv _rvð
_yp�

_yÞ�msrsð
_yp�

_yÞsinðytÞ�cað
_y� _ypÞ�kaðy�ypÞ

A4 ¼�mvrvð
_yp�

_yÞ2�2mvrvð
_yp�

_yÞ2þcv _rvþmvg sinðytÞþ fv (4b)

The whole system equations of motion (Eq. (4)) can be arranged in state space form by defining the following state
variables:

qs ¼ yp _yp yp
_yp y _y rv _rv

h iT
¼ q1 q2 q3 q4 q5 q6 q7 q8
� �T

(5a)

_qs ¼ q2 €yp q4
€yp q6

€y q8 €rv

h iT
(5b)

As tuning process starts by positioning the sliding block location (rv) on the absorber rod, it is normal to assume (rv) and
its derivatives as known input and the whole system equations of motion are reduced to three equations as given after in
state space form:

ðmpþmsþmvÞ ððmsrsþmvq7Þcosðyf�ydþq3þq5ÞÞ �ðmsrsþmvq7Þcosðyf�ydþq3þq5Þ

ðmsrsþmvq7Þcosðyf�ydþq3þq5Þ msr2
s þmvq2

7þ Ivþ Isþ Ip �ðmsr2
s þmvq2

7þ Ivþ IsÞ

�ðmsrsþmvq7Þcosðyf�ydþq3þq5Þ �ðmsr2
s þmvq2

7þ Ivþ IsÞ msr2
s þmvq2

7þ Ivþ Is

2
664

3
775

_q2

_q4

_q6

2
64

3
75¼

A001

A002

A003

2
64

3
75

(5c)

where

A001 ¼�mvq8ðq4�q6Þcosðyf�ydþq3�q5Þ�mvðq4�q6Þðq8 cosðyf�ydþq3�q5Þ�rvðq4�q6Þsinðyf�ydþq3�q5ÞÞ

þmsrsðq4�q6Þ
2sinðyf�ydþq3�q5Þ�kp1

ðq1�l1q3Þ�kp2
ðq1þ l2q3Þ�cpq2þ fe

A002 ¼�mvq2ðq8 cosðyf�ydþq3�q5Þþq7ðq4�q6Þsinðyf�ydþq3�q5ÞÞ�4mvq7q8ðq4�q6Þ

þmsrsðq4�q6Þsinðyf�ydþq3�q5Þ�caðq6�q4Þ�kaðq5�q3Þþkp1
ðq1�l1q3Þðl1Þ�kp2

ðq1þ l2q3Þðl2Þ

A003 ¼�mvq2ðq8 cosðyf�ydþq3�q5Þþq7ðq4�q6Þsinðyf�ydþq3�q5ÞÞþ4mvq7q8ðq4�q6Þ

�msrsðq4�q6Þsinðyf�ydþq3�q5Þ�kaðq5�q3Þ�caðq6�q4Þ (5d)

These equations will be used later for the simulation process of the proposed VIVA for specific values of its parameters
and their effects on its performance.
5. VIVA parameters optimization

5.1. Absorber tonal tuning

Tonal tuning means that the absorber natural frequency is set equal to the excitation frequency of the primary system
which causes the vibrations. The proof of this fact in the case of a two dof primary system is presented in Appendix A. Using
VIVA, this can be achieved by positioning the moving block to the exact location (rv) that suppresses the undesirable
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frequency and this can be calculated as follows [2]:
�
 getting the absorber equation of motion (see Fig. 2) and/or by putting yp=0 and yp=0 in Eq. (2c) then the equation of
motion of the absorber rod alone will be as follows:

ðmsrs
2þmvrv

2þ Isþ IvÞ
€yþca

_yþkay¼ 0 (6a)

calculate the absorber natural frequency on which is
�
onðabsorberÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka

ðmsrs
2þmvrv

2þ Isþ IvÞ

s

fnðabsorberÞ ¼
on

2p (6b)

It is noticed that the absorber natural frequency is where the equilibrium position of the absorber rod is y=y0=0.

5.2. Absorber parametric study

Referring to Eq. (6b), the frequency range of VIVA depends on the selection of its parameters [ms, rs, Is, rv, ka, mv and Iv].
The optimum selection of such parameters has a good effect on its performance as outlined after:
�
 Effect of absorber torsional stiffness (ka): Using Eq. (6), the effect of spring stiffness coefficient (ka), in the tunable
frequency range, is simulated for specific values of its other parameters. Fig. 3 presents the absorber natural
frequency (Hz) versus the displacement of the moving block rv (m) for different values of the stiffness coefficient
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ka (ka=10, 20, 30,y and 100 kN m/rad) with ms=2 kg mv=1 kg, rs=0.3 m. The obtained results show that increasing the
spring stiffness coefficient (ka) is more effective at high frequency range with small values of rv.

�
 Effect of absorber moving block inertia (mv and Iv): Increasing the inertia (mv and Iv ¼mvr2

v) of the moving block
increases the tunable frequency range as shown in Fig. 4. These two parameters (mv and Iv) are more effective at lower
frequency range with higher values of rv.

5.3. VIVA optimization algorithm

After selecting the absorber constant parameters [ms, rs, Is], its variable parameters [rv, ka, mv, Iv] have to be optimized
for better performance. Without loss of generality, the upper bounds of these parameters are relaxed to have a nonlinear
constrained optimization problem. For VIVA better performance, its rod mass is always found to be the specified upper
bound [77,78]. Though using a heavier mass reduces the dynamic response to a significant extent, the reduction may not
be justified in terms of increasing mass of the system. In this section, a minimization problem is programmed to find the
optimum values of VIVA variable parameters. One of the used methods is the large scale constrained nonlinear method
that explores the searching space from a starting point [79]. This method failed to find the optimum values of absorber
parameters and medium-scale method (line search) is used instead [2]. Fig. 5 presents the flow chart of a computation
algorithm based on line search and using Eq. (6a) to find the minimum values of ka, mv, and maximum value of rv. The
absorber variable inertia Iv is calculated from the other parameters (mv,rv).
NO Yes

Define system parameters 

Start

Set initial values,
boundaries and constraints
for optimized parameter   

Select values for the 
optimized parameter 

Compute objective function 

Minimize obj.
function using
“fmincon.m”

If obj. function
≤ 0 

End

Fig. 5. Flow chart of the optimization process.
5.4. Numerical example (VIVA optimum parameters)

For simulation purpose, the developed optimization algorithm (Fig. 5), is tested using arbitrary input data for VIVA in
two cases with two different operating frequency ranges (Case A: 24–40 Hz) and (Case B: 11–13.5 Hz). Table 1 includes the
VIVA numerical values, operating frequency ranges and the obtained VIVA optimum parameters.
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In the next sections, the computation algorithm for studying the performance of the proposed VIVA is outlined. Two
explicit cases are simulated for the data given in Table 1 for the two specified frequency ranges.
Table 1
VIVA optimum parameters.

(a) Input data (Case A) rs=0.5 m ms=5 kg Is=0.416 kg m2

Operating frequency range is taken 24–40 Hz

Output results (VIVA optimum parameters) rv(max)=1.0 m mv=2.5977 kg Iv=mvrv
2

ka=184.23 kN m/rad

(b) Input data (Case B) rs=0.28 m ms=2.5199 kg Is=0.2634 kg m2

Operating frequency range is taken 11–13.5 Hz

Output results (VIVA optimum parameters) rv(max)=0.56 m mv=0.4379 kg Iv=mvrv
2

ka=3.377212 kN m/rad

Table 2
System parameters numerical values (see Fig. 2).

Primary system Absorber rod Sliding block Other data

Case A

mp=30 kg ms=2 kg mv=1 kg Excitation data fex=fn=30 Hz fe=50 sin(2pfext)

Ip=1.625 kg m2 Is=0.06 kg m2
Iv ¼mvrv

2 kg m2

cp=153.8 N s/m ca=0.5 N s/rad Cv=20 N s/m

kp1=150 kN/m ka=20 kN m/rad

kp2=145 kN/m yf=0 Simulation time t=3 s

lp=0.8 m rs=0.3 m rv (variable)

Case B

mp=16.406 kg ms=2.5199 kg mv=0.43788 kg Excitation data fex=fn=11 Hz fe=2 sin(2pfext)

Ip=0.1275 kg m2 Is=0.2634 kg m2
Iv ¼mvrv

2 kg m2

cp=30 N s/m ca=0.5 N s/rad Cv=5 N s/m

kp1=72 576 kN/m ka=3.377212 kN m/rad

kp2=72 576 kN/m yf=0 Simulation time t=3 s

lp=0.46 m rs=0.28 m rv (variable)
6. Computation procedure

The VIVA optimum parameters obtained in the preceding sections (Table 1) are used to develop a computation
algorithm for simulating a real VIVA attached to a two dof primary system. The goal of these simulations results is to assess
the feasibility and performance of the proposed VIVA. The system response at any time (t) can be calculated using Euler’s
method. In this case the initial conditions and the time step (Dt) are known. The obtained system equations of motion
(Eqs. (5) and (6)) are used to develop the computational algorithm described after:
�
 Set the system input data mp, ip, ip, kp, cp and the excitation frequency fex (see Table 2).

�
 Set the suitable absorber parameters [ms, rs, Is, rv, ka, mv, Iv] and its inclination angle yf (see Table 2).

�
 Use the absorber natural frequency on (Eq. (6)) to calculate the value of the tuned rv and hence Iv.

�
 Using the system of equations (Eq. (5)), the system dynamics can be written in the form:

€q ¼M�1N (5e)

Set the initial values of all system variables and the desired time step (Dt)
�

�
 Use Euler Integration method q, q are obtained and plotted with time using Matlab.

7. Simulation results

The developed computation procedure is used to simulate the system presented in Fig. 1 in two cases: the obtained nonlinear
model (Eq. (5)) and a linearized model [2]. A linearized model of the whole system is obtained using Eq. (5), as follows:
�
 absorber rod installation angle (yf) is taken as equal to zero (yf=0);

�
 total inclination angle (yt) is assumed as small as cos(yt)=1 and sin(yt)=yt.
The numerical values given in Table 2 are used for both cases and obtained simulation results are presented in the next
section.
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7.1. Simulation results of nonlinear model

Case #1: High frequency range:
Data#1: Using the data given in Tables 1(a) and 2 with a tuned VIVA where the sliding block is at its tuning position

(rv=0.2673) and excitation frequency of 30 Hz.
Simulation results #1 (Figs. 6–8): The primary mass linear and angular displacements (yp,yp) and the developed VIVA

absorber angular displacement (y) are shown in Figs. 6–8, respectively, in time and frequency (FFT) domains at the sliding
block tuned position (rv=0.2673). The frequency domain shows the peak frequency at 30 Hz (Figs. 6 and 7), which is equal
to the excitation frequency of the two dof primary system. Another peak appears at 15 Hz (Fig. 6), which is the natural
frequency of the primary system. Fig. 8 shows that the absorber natural frequency (30 Hz) equal to the primary system
excitation frequency.
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Fig. 6. Primary mass displacement (yp) [Case #1: nonlinear model (rv=0.2673 m)].
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Fig. 7. Primary mass displacement (yp) [Case #1: nonlinear model (rv=0.2673 m)].
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Fig. 8. Absorber displacement (y) [Case #1: nonlinear model (rv=0.2673 m)].
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Case #2 Low frequency range:
Data#2: Using the data given in Table 2 with a tuned VIVA where the sliding block is at its tuning position (rv=0.53) and

excitation frequency of 11 Hz.
Simulation results #2 (Figs. 9–11): The primary mass linear and angular displacements (yp,yp) and the developed VIVA

absorber angular displacement (y) are shown in Figs. 9–11, respectively, in time and frequency (FFT) domains at the sliding block
tuned position (rv=0.53). The frequency domain shows the peak frequency at 11 Hz (Figs. 9 and 10), which is equal to the
excitation frequency of the two dof primary system. Other peaks appear at 14 Hz (Fig. 9) and 9 Hz (Fig. 10). Fig. 11 shows that the
absorber natural frequency (11 Hz) equal to the primary system excitation frequency in addition to another peak at 8.5 Hz.
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Fig. 9. Primary mass displacement (yp) [Case #2: nonlinear model (rv=0.53 m)].
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Fig. 10. Primary mass displacement (yp) [Case #2: nonlinear model (rv=0.53 m)].
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Fig. 11. Absorber displacement (y) [Case #2: nonlinear model (rv=0.53 m)].
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7.2. Simulation results of llinearized model

The goals of the simulation of the linearized model are to assess:
�
 the feasibility and performance of the proposed VIVA design and

�
 the accuracy of the linearized model.
Applying the same procedure and same data in the cases simulated in Section 7.1 with the linearized equations, the
obtained simulation results are presented as follows:

Case #3: High frequency range:
The obtained simulation results are presented in Figs. 12–14 when the sliding block tuning position (rv=0.2673) and

excitation frequency of 30 Hz.
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Fig. 12. Primary mass displacement (yp) [Case #3: linearized model (rv=0.2673 m)].
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Fig. 13. Primary mass displacement (yp) [Case #3: linearized model (rv=0.2673 m)].
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Fig. 14. Absorber displacement (y) [Case #3: linearized model (rv=0.2673 m)].
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Case #4: Low frequency range:
The obtained simulation results are presented in Figs. 15–17 when the sliding block tuning position (rv=0.53) and

excitation frequency of 11 Hz.
The relative deviation between the linear and nonlinear models in cases #3 and #4 is less than 1%, which confirms the

realistic use of this linearized model.
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Fig. 15. Primary mass displacement (yp) [linearized model (rv=0.53 m)].
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Fig. 16. Primary mass displacement (yp) [Case #4: linearized model (rv=0.53 m)].
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Fig. 17. Absorber displacement (y) [Case #4: linearized model (rv=0.53 m)].
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7.3. Comments and discussion

The obtained simulation results prove that the proposed VIVA for two dof primary systems have the following
advantages compared to other VIVA designs:
�
 It covers wider frequency range than other VIVA designs with shorter settling time [2].

�
 The absorber installation angle in both the vibration reduction and frequency range is effective.

�
 The proposed VIVA for two dof primary systems is more realistic in many applications [1].

�
 More vibration reduction in the primary system linear and angular displacements as presented in Figs. 18 and 19. These

two figures show, respectively, the primary system linear and angular displacements at three different conditions: (1)
response of primary system alone, (2) response of primary system with detuned VIVA and (3) response of primary
system with tuned VIVA.
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�
 The effectiveness of the proposed VIVA in reducing the primary system vibration to more than 95%.

�
 The minimum vibration always occurs at the tuned position.

�
 The primary system response with detuned VIVA may be higher than its own response alone.

8. Conclusions

This investigation presents the dynamic modeling and simulation of a proposed modified design of VIVA’s for the
vibration control of two dof primary systems. Lagrange formulation is used to obtain its dynamic model in an analytical
form. An optimization algorithm is developed to select the best absorber parameters for better vibration suppression.
A computation procedure is developed and programmed to simulate the absorber performance characteristics. The
simulation results show better performance compared to previous VIVA designs. The effect of VIVA parameters mv and Iv,
which represent its size, and ka, which represents its resilient element, on the vibration suppression and absorber
performance and broadband frequency is studied. The obtained results can be used as a guide to design the proper VIVA for
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a certain application. In addition, a linearized model of VIVA dynamics is developed, tested and simulated for the same data
used in its nonlinear model. The relative deviation between results of the linear and nonlinear models is less than 1% which
confirms the realistic use of this linearized model. The proposed VIVA needs to be experimentally tested to verify the
obtained simulated results about its performance, effectiveness, efficiency on vibration suppression of two dof primary
systems. This is the subject of another paper.
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Appendix A

Using Eq. (5), the linearized model of the whole system is obtained as follows: the absorber rod installation angle (yf) is
taken as equal to zero (yf=0). The total inclination angle (yt) is assumed as small as cos(yt)=1 and sin(yt)=yt. The following
mass, damping and stiffness matrices are obtained:

M¼

msþmvþmp msrsþmvrv �ðmsrsþmvrvÞ

msrsþmvrv mvr2
vþmsr2

s þ Ivþ Isþ Ip �ðmvr2
vþmsr2

s þ Ivþ IsÞ

�ðmsrsþmvrvÞ �ðmvr2
vþmsr2

s þ Ivþ IsÞ mvr2
vþmsr2

s þ Ivþ Is

2
64

3
75

C¼

cp 0 0

0 ca �ca

0 �ca ca

2
64

3
75

K¼

kp1þkp2 �ðkp1
l1�kp2

l2Þ 0

�ðkp1
l1�kp2

l2Þ kaþkp1
ðl1Þ

2
þkp2
ðl2Þ

2
�ka

0 �ka ka

2
64

3
75

D¼M-1K

Md ¼
M C

0 M

� �

Kd

0 K

�M 0

� �

Dd ¼M�1
d Kd

Using the dynamic matrix Dd [82] the forced vibration analysis, the H matrix elements may be calculated as follows:

hij ¼ ðkij�o2mijÞþ iociji, j¼ 1,2,. . .,n

ype�ij1 ¼

f1 h12 h13

f2 h22 h23

f3 h32 h33

							
							

detðHÞ

ype�ij2 ¼

h11 f1 h13

h21 f2 h23

h31 f3 h33

							
							

detðHÞ

ye�ij3 ¼

h11 h12 f1

h21 h22 f2

h31 h32 f

							
							

detðHÞ
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where j1, j2 and j3 are phase angles of the displacements yp, yp and y, respectively. Using Matlab the expressions of yp

and yp in symbolic form are obtained. The dominator for yp is given by

ypðdomÞ ¼�w2Ipka�kp1l21w2Iv�kp1l21w2Is�kp2l22w2Iv�kp2l22w2Isþw4Ipmvr2
vþw4Ipmsr

2
s�kp1l21w2mvr2

v

�kp1l21w2msr
2
s�kp2l22w2mvr2

v�kp2l22w2msr
2
s þw4IpIvþw4IpIsþkp1l21kaþkp2l22ka

ypðdomÞ ¼ kp1l1ka�kp2l2ka�kp1l1w2mvr2
v�kp1l1w2msr

2
s�kp1l1w2Ivþkp2l2w2mvr2

v�kp1l1w2Is

þkp2l2w2msr
2
s þkp2l2w2Ivþkp2l2w2Is

Substituting (Eq. (6b)) in these expressions gives, yp=0 and yp=0 in this configuration. This proves that to reduce the
vibration of a two dof primary system due to a desired excitation frequency, the natural frequency of the absorber
(Eq. (6b)) must be set equal to the excitation frequency that needs to be eliminated.
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